HYDRAULIC RESISTANCE OF CHANNELS WITH
PERMEABLE WALLS
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We present the results from an experimental study of hydraulic resistance in turbulent flow .
for an incompressible liquid in channels (collectors) of constant cross section, with a run-
off and influx through a permeable (perforated) wall.

Calculations of the change in pressure through the length of a channel (collector) during the runoff or
influx through a wall must be based on the use (in some form) of the equations of liquid motion with a vari-
able flow rate along the path [1, 2]:

P 1 podeo +wdp + por S 4 ¢ o, (1)
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Equation (1) differs from the conventional Bernoulli equation primarily in the presence of the term
pw2dG/G by means of which we take into consideration the dynamic or inertial effect of mass separation or
addition, This inertial term is frequently the most important in the equation and failure to make provi-
sion for this term leads to an error which, as will be demonstrated below, may amount to 100% and more

of the calculated pressure difference.

For specific calculations with (1) we have to know the relationship applicable to the frictional resis-
tance factor ¢ in that equation (this is some dimensionless equivalent of the shearing stress 7 at the wall):

=5 (2

and for the momentum-flux factor

(—”—)2 dF. (3)
w

The coefficients ¢ and g are [3, 4] functions of the local Reynolds number Re(x) = w(x) Deq/v and of the run-
off coefficient K (x) = vy{x)/w(x).* However, experimental data on these coefficients are presently few in
number and contradictory [5, 6]. This makes it necessary to apply inadequately validated assumptions

in the calculations of the change in pressure along the collectors as regards the coefficient of hydraulic
resistance [7, 8].

There are even fewer data on the momentum-flux coefficient g.

The experimental determination of the coefficients { (Re, Kj) and 5(Re, K)) is an extremely difficult
problem, since it is impossible to find both of these coefficients from the data of a one-dimensional experi-
ment without measuring the shearing stress at the wall (with the use Eq. (1)). For this we require an
additional measurement of T and of the velocity profile for u(r, x).

It is therefore natural that an attempt be made to reduce (1) to an equation with a single unknown which
can be found from a one-dimensional experiment without measurement of 7.

*Here and below in the case of runoff the quantities vy and, consequently, K are positive, while in the case
of influx they are negative,
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Fig.1. Diagram of the working section: 1) water inlet;
2) support for pulse tube; 3) porous Plexiglas tube; 4)
chamber; 5) rotameter drains; 6) water outlet; 7) mov-
able pulse tube; 8) packing gland; 9) pressure probes at
pulse orifices in the wall (to a battery manometer),

It was proposed in [9] that a study be undertaken with regard to the use, in subsequent calculations, of
the local ratio of the Euler numbers — the true (experimental) and theoretical — as such a coefficient:

E=—, (4)

where
Eu,= 16K, —§,.

This method can be applied successfully in calculating flows with high runoff coefficient; however, it
is not suitable near values of K1 = &/16.

We therefore attempted to develop a more universal method that is also based on application of the
equation of motion (1), but devoid of this drawback.

In dimensionless form Eq. (1) can be written as

-dP dinf
—Eu=~-—=16pK, [ 1+0. —t. 5
u X 6pK ( + 0.5 3 lnRe) g (5)

Bearing in mind that g is close to unity and that the known portion must be excluded from the object
of our study, let us rewrite (5) in the form
dP dp
— ~ 16K, =16 —1) +8K,Re— —¢. ' 6
X 1 K. (B —1) +8K.R R g (6)

Having denoted the right-hand member of (6) as £, we find the equation of motion in a simple form
that is convenient for calculation:

dp
= 16K, —E&. 7
dX : M

The variable £ will be known as the effective coefficient of hydraulic resistance,*

For flow with runoff (distribution collectors) we have g~ 1.0, and the hydraulic~resistance factor £
is approximately equal to the coefficient of frictional resistance £. For flows with influx (receiving col-
lectors) the coefficient ¢ is small in most cases [6]. In this case { may depend strongly on the coefficient
£ for the momentum flux; however, in terms of absolute magnitude ¢ is small.

Analysis of the right-hand member of (6) easily demonstrates that £ (as well as ¢ and 8) is a function
of the local criteria K, (x) and Re(x) (or Ki(x) and Re (X) = vyDe/ V).

To study £ we develop an experimental installation whose working section is shown in Fig. 1; the work-
ing fluid is water. The basic element of the working section is a thick-walled Plexiglas tube with an inside

*Or for brevity, simply as the coefficient of hydraulic resistance.

276



TABLE 1. Parameters of Porous Tubes

No, of working | 2 3 ‘ s
section
Porosity & i 0,008 0,024 0,080 0,160 0,030
No.of orifices per 4 4 8 16 2 and 3
row
No. of orifice rows 10 30 50 50 50
Me/an relative pitch 1,8 0,578 0,346 0,346 0,346
t/D
Lengt%qof working 225 241 241 241 241
section, mm
Value of central v 360° g0 ©
ir;é}tes g'f xéltgin the (drill holes about entire perimeter)
orifices were drilled,

diameter of 20 mm, whose porosity is governed by the number of orifices (2 mm in diameter), drilled
into the wall.

The parameters of the porous tubes on which the tests were carried out are given in Table 1.

The basic requirements imposed on the experiment to find the resistance factor involve the exact
establishment and maintenance of a specified runoff (influx) law over the length of the channel dG/dx = f;(x)
and the exact determination of the derivative dp/dx = f,(x). To satisfy the first of these requirements, we
have made the working section in 10 segments, Each segment is connected by means of a regulation valve
to its own rotameter to set and measure the required flow rate for the runoff (influx) through the given seg-
ment.

To raise the reliability of the procedure by which the static pressure is measured along the length of
the porous tube, the measurement system was duplicated. The pressure was sampled at the pulse orifices
in the wall (one orifice per segment) and at the movable pulse tube, the latter provided with a positioning
device (Fig.1). With the pulse tube we can measure the static pressure for virtually any pitch. The read-
ings of both systems were fed to a battery-operated water differential manometer.

In studying flow with runoff, the basic readings were those from the movable pulse tube, while in
studying flow with influx, the basic readings were those taken from the pulse orifices at the walls of the
various segments {the readings of the pulse tube, particularly when K 1 < —0.08, were distorted by the
velocity head of the jet of incoming fluids).

Because of the use of the movable pulse tube, the channel of the working section was made annular,
with a diameter ratio of 0.305 and an equivalent diameter of 13.9 mm.

The friction factor ¢ and the momentum-flux coefficient 8 for flows with a relatively smooth change in
the liguid flow rate over the length are virtually independent of the form of the function Gx) [3,4,6]. It
follows from (6) and (7) that the hydraulic-resistance factor in this case must also be virtually independent
of the law governing the change in flow rate over the length of the collector. The basic experiments in this
effort were therefore performed with the influx and runoff uniform over the length, while the validity of ap-
plying the derived relationships to any other (but sufficiently smooth) distribution function G(x) is demon~
strated by special experiments.

Processing of the measurement results was accomplished on an electronic digital computer. The
experimental values of p(x) were approximated by a polynomial of third degree whose coefficients were
determined by the method of least squares. The degree of the polynomials was selected on the basis of data
from a preliminary theoretical analysis [1], as well as an analysis of the primary experimental results.
The derivatives dP/dX were calculated at the points at which the static pressure was measured.

The hydraulic-resistance factor £ was determined from (7), and this led to the question as to which
runoff (influx) coefficient it is best to use, i.e., the one calculated in terms of the "rue" velocity Virue
= AG/ prDAxes at the orifices of the porous tube, or the one calculated interms of the conditional velocity
Veon = AG 7D Ax, referred to the entire side surface. We will refer to the runoff (influx) coefficient cal-~
culated by the first method (from vipye) as the "rue" coefficient and we will denote it as K qtrue. while the
coefficient determined by the second method will be known as the "conditional" coefficient, denoted as K 1-
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Fig. 2. Effective coefficient of hydraulic resistance for flow with
runoff as a function of the "true" runoff coefficients: 1) gp = 0.008;
2) 0.024; 3) 0.08; 4) 0.16 (the dash-—dot lines show the correspond-
ing values of ¢).

TABLE 2. Values of the Coefficient and Exponents Results from the processing of the experimental
in (8) data with respect to flows involving runoff are shown
_ in Fig. 2 as functions of {yyn = £(Kityrye ) (fromthe Rey-
Pm%ﬁuy' 0,008 0.024 ! 0.080 0,160 nolds number,when Re > 10? the resistance factor ¢
_ is self-similar). The experimental points provide
“ ?:?232 ?:éf” ?:299 }:gg‘ a good approximation of the exponential relation
Lo 0,0235 0,0253 0,273 0,0301 Erun=Go +aKe_ 8)

The coefficients of (8), found by the method of least
squares, are shown in Table 2.

The calculated values of ¢, agree with the self-similar values of the friction factor for the porous tube,
these having been derived experimentally with constant mass flow through the tube (when K, = 0).

In connection with the fact that the walls of the porous tube exhibit substantial roughness because of
the orifices, the self-similarity of ¢,— on the basis of the Reynolds number — was reached as soon as
Re =(3-4) - 10%,

It proved to be preferable (more universal) to process the experimental data in the variables £ypyun
=£(K)), l.e., onthe basis of the conditional runeff coefficient (K; =K, ¢pyotf). Herethe experimental points
for the three variants of the porous tube, with the exception of the first, are generalized by the single rela-

tionship
=G + 15.6.K1J_.27‘ o

Formula (9) in the range of parameters 10? = Re = 1.1°10% 0.0022 =< K; = 0.1; t/Deq = 0.578, and d/
Deq = 0.145 describes the experimental points with a standard deviation of ~ 6%. The hydraulic-resistance
factor in flow with runoff in the cited range of parameters is virtually independent of the porosity and
relative spacing between the orifice rows. It is only ¢, that depends weakly on these quantities.

Under actual conditions, we most frequently encounter a discrete change in the flow rate of the liquid
over the length, and the fundamental difference between the real flow and that of a mathematical model (with
a constant runoff over the length and the perimeter) is determined by the magnitude of the relative pitch
t/Deg. Here the effect of t/Deq, provided it is sufficiently large, becomes noticeable in the intial experi-
mental results, Thus, when t/De = 1.8 the piezometric lines are not smooth. Between the orifice rows,
over the length t of the pitch, the flow can undergo changes designed to "restore" the characteristic velocity
field for a constant-mass flow, and here we either find a drop in the static pressure (with an overall rige in
pressure) or a significant retardation of its iherease. For a relative pitch t/Deq = 0,578 this phenomenon
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Fig.3. Comparison of experimental results with the calculation
according to formula (10): 1) author's data; 2) of [6]; 3) Cf/Cfo
{data of [12]); 4) according to (10).

Fig. 4. Relative gradients Eyyn and E* as functions of the
"conditional" runoff coefficient (ef = 0,16): 1) Epyp is the rel-
ative pressure gradient according to (4); 2) E* is the rela-
tive pressure gradient according to (12).

is not observed. Processing of the experimental data [10] derived for values below t/Deq = 0.84 demon-
strated that the experimental points fall satisfactorily along the curve of function (9), which we derived.
Hence we can draw the conclusion that £, is virtually independent of t/Deq, at least when t/Deq = 0.84.

The characteristic feature of the coefficient of hydraulic resistance for flow with influx is the decline
in the latter as the absolute magnitude of the influx coefficient increases, i.e., &inis always smaller than
¢, (Fig. 8). The factors responsible for this behavior of £j, are covered rather fully by the authors of {6,
11].

The substantial scattering of the experimental values of £;, is explained by the fact that it is derived
from (7) as the difference of two large quantities (dP/dX < 0 throughout), with the result that (i) is smaller
than the other terms of (7) by 2-3 orders of magnitude.

However, we do not need high accuracy in the resistance coefficient £, for practical calculations,
since the pressure difference in flow with influx is governed primarily by inertial forces rather than by
friction (see formula (7)).

Kutateladze and Leont'ev [11] examined the limit laws of friction as Re — ~and they derived the the-
oretical formula for the calculation of friction on a porous plate with continuous injection. In our notation,
the Kutateladze and Leont'ev formula has the form

Eo=t (1 + 05 &)z. (10)
&

In Fig. 3 we compare the experimental data from [6, 12] on ¢ and our data on iy with the calculation
according to (10).

Formula (10) satisfactorily describes the experimental data and can be recommended for purposes of
calculation., However, for practical purposes, considering the location of the main mass of the experi-
mental points on the curve of Fig. 3 below the theoretical curve, we can propose simpler relationships

Eip =0 + K. when —K, <,
gin =0 when —K, >C0

(11)
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The stabilization segment for the hydraulic-resistance factor proved to be very short (both in tests
with runoff and with influx) and did not extend beyond the limits of the first segment (x/Deq = 2), We found
no noticeable systematic stratification of the points corresponding to the initial segments of the collector;
analogous results were obtained in [6] in studying flows with influx in a porous tube,

Since the collectors in numerous industrial installations are designed sothat there is no runoff or in-
flux over the entire perimeter, it would be interesting to ascertain whether or not the orifice stagger angle
¢ in the collector has a pronounced effect on the hydraulic resistance.

The tests performed in the No. 5 working section (see Table 1) demonstrated that the nature of the
function £, ., = f(K,) remains the same as in the case of circular runoff; however, numerically & pyy is
approximately 30%higher.

From this standpoint it would also be interesting to examine the experimental data of [10]. Despite
the fact that the collector in that reference had' only two orifice rows in diametric array (the second time
there were four rows), the experimental points — as pointed out earlier — group themselves about the curve
for function (9), derived for runoff over the entire channel perimeter.

In conclusion, let us dwell in somewhat greater detail on the popular method {1, 14] of calculating the
pressure difference across collectors by means of the conventional Bernoulli equation, which involves the
use of the coefficient of frictional resistance for a flow without runoff,

If this calculation procedure is accurate, the resulting pressure gradient
dapr .

E¥ =_ X _ (12)
SKJ_ _Co

(the denominator is the gradient dP/dX, calculated from the Bernoulli equation) would always be equal to
unity. Figure 4 shows E* (K)), calculated from experimental data for flow with runoff (from the averaged
curve for Epyp(K1)). Near the values of K, = £,/8, where the denominator of (12) vanishes, the error may
be as great as you please. Given sufficiently large values of K;, the error in the pressure gradient drops
to ~10%, which is a result of the fact that the errors resulting from the failure to account for the inertial
term in (1) and from the incorrect specification of the friction factor have been partially offset.

For the flows in receiver collectors the pressure difference derived from the application of the con-
ventional Bernoulli equation — as follows from (1) — is smaller than thetrue difference by a factor of ap-
proximately two, while in the case of circular receiving chambers [1] the difference is smaller by a factor
of three.

NOTATION
p is the static pressure;
p is the density;
w is the average velocity, w = w(x);
G is the mass flow rate, G = G(x);
X is a coordinate;
Deq is the equivalent diameter;
& is the frictional resistance factor in a constant-mass flow;
u is the longitudinal velocity component, u = u(r, x);
F is the area of the flowthrough section of the collector;
Vw is the radial velocity at the wall (for runoff vy, > 0, and for influx Vw < 0);
P =p/(pw?/1);
X = X/Deq; :
D is the diameter of the porous tube (of the collector);
t is the distance between adjacent rows of orifices in the wall of the collector;
Cf is the resistance factor for external streamlining of the plate with injection;
Re = wDeq/v is the Reynolds number;
Ki = wy /W is the runoff coefficient;
Eu = —-dP/dX is the Euler number;
ef is the channel porosity.
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